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ABSTRACT

The design, synthesis, and structural analysis of two macrocyclic D,L-alternating hexapyrrolinones have been achieved. These cyclic peptide
mimics adopt a flat, hexagonal conformation, stabilized by intramolecular hydrogen bonding between adjacent pyrrolinone rings. Extensive
NMR studies and X-ray analysis reveal, respectively, that the macrocyclic hexapyrrolinones aggregate in solution and in the solid state form
staggered stacked nanotube-like assemblies.

The evolution of the pyrrolinone scaffold toward a universal
peptidomimetic possessing both conformational control and
diversity was a significant theme of the Hirschmann-Smith
collaboration for over 15 years. Through these efforts, we
learned that the combined effects of R-stereogenicity of the
pyrrolinone ring, intramolecular hydrogen bonding, and
choice of side-chains determined the global minimum energy
conformation of the polypyrrolinone chain. Homochiral
polypyrrolinones (eg., all D, Figure 1)1 that preferentially
adopt an extended conformation proved to be excellent
�-strand/�-sheet mimics2 and, as such, led to potent, orally
bioavailable pyrrolinone-based enzyme inhibitors of aspartic
acid proteases,3 as well as modest metalloprotease inhibitors4

and peptide-pyrrolinone hybrid ligands for the class II MHC
protein HLA-DR1.5 Alternatively, heterochiral polypyrroli-

nones (e.g., alternating D,L pyrrolinones; Figure 1), much
like heterochiral polypeptides, adopt a turn structure6 and
as such have been employed to generate functional �-turn
mimetics.7 Subsequent investigations of the extended het-
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erochiral pyrrolinone motif led to the discovery that hexapy-
rrolinone (-)-1 adopts a flat G-shaped conformation that
aggregates in solution and in the solid state self-assembles
into a nanotube-like stucture.8

The nanotube-like architecture of (-)-1 in the solid-state,
possessing termini in close proximity, readily suggested the
design of macrocyclic hexapyrrolinones 2 and 3 (Figure 2a).
Unencumbered with terminal substituents, we reasoned that
such cyclic polypyrrolinones might self-assemble into nano-
tubes.9 Pleasingly, Monte Carlo conformational searches10

for 2 predicted that the lowest energy conformations would
possess a flat, hexagonal conformation (Figure 2b), in
agreement with previous structural analysis of the acyclic
heterochiral pyrrolinones such as (-)-1.

Importantly, the predicted conformation presents hydrogen
bonding acceptors and donors (cf. CdO and N-H, respec-
tively) in an alternating pattern directed above and below
the plane of the molecule, thus providing the potential for
intermolecular hydrogen bonding in a nanotube-like array.

To access 2, we initially employed our iterative polypyr-
rolinone synthetic tactic in a linear fashion,2,6 beginning with
the C terminus to generate the open-chain pentamer (-)-10.
Although this approach to (+)-2 eventually proved successful
(Supporting Information), we subsequently designed a more
effective, convergent synthesis, beginning with (+)-411 and
(-)-5 (Scheme 1).12 Condensation to afford an intermediate

imine, followed by treatment with KHMDS, generated
monopyrrolinone (+)-6, a common precursor for both (+)-7
and (-)-8. Hydrogenolysis furnished amine (+)-7, while
treatment with LiBF4 led to aldehyde (-)-8. Union of these
two pyrrolinone building blocks was achieved in 82% yield
by imine formation, followed by treatment with KHMDS.
Acetal hydrolysis furnished trispyrrolinone (-)-9; a two-step
sequence with pyrrolinone amine (+)-7 then delivered the
pentapyrrolinone (-)-10. The critical final pyrrolinone ring
construction, leading to macrocycle (+)-2, was achieved in
a similar fashion, albeit in this case the yield was at best
modest (ca. 12-13%). Notwithstanding the efficiency of the
final cyclization, a sample (ca. 100 mg) of (+)-2 was
prepared for structural analysis.

Assignment of structure (+)-2 was based principally on
simplification of both the 1H and 13C NMR spectra, in
conjunction with HRMS identification of the parent ion.
Pentapyrrolinone (-)-10 (an unsymmetrical molecule, Scheme
1) displays a distinct set of signals for the five chemically
(and magnetically) different pyrrolinone units (e.g., vinyl and
benzyl hydrogens, etc.). Conversion to the cyclic C3-
symmetrical hexamer (+)-2 (Figure 3, Scheme 1) renders
each benzyl and isobutyl pyrrolinone chemically and mag-
netically identical, resulting in isochronous NMR signals for
the three monomeric units. Indeed, only two sets of signals
are observed in both 1H and 13C NMR spectra of (+)-2,
corresponding to the two types of pyrrolinone rings.

The propensity of macrocycle (+)-2 to self-assemble in
solution was demonstrated via a series of 1H NMR studies
in CDCl3 similarly employed for in the study of (-)-1.8,13

The cyclic structure of (+)-2 permits each N-H of the
individual macrocycles to be involved in intramolecular
hydrogen bonding, thereby lessening their solvent exposure,
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Figure 1. (a) Homochiral (DDD) and heterochiral pyrrolinones
(LDL). (b) Structure of D,L-hexapyrrolinone (-)-1.

Figure 2. (a) Prospective macrocyclic hexapyrrolinones 2 and 3.
(b) Stereoview of the lowest energy conformation of 2 derived via
Monte Carlo conformational analysis.
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and thus a relatively small effect of concentration was
observed on the chemical shifts.6 Nonetheless, a concentra-
tion dependence of the N-H protons was observed (Figure
3) despite the intramolecular interactions. The measurable
downfield shift for the N-H signals with increasing con-
centration is consistent with aggregation mediated by inter-
molecular hydrogen bonding.

Single crystal X-ray analysis of (+)-2 would provide the
strongest evidence possible for nanotube assembly; unfor-
tunately, crystals of (+)-2 suitable for X-ray analysis have
not, as yet, been forthcoming. The failure to obtain suitable
crystals of (+)-2 prompted the synthesis of hexapyrrolinone
3, wherein the isobutyl groups were substituted for isopropyl
groups, with the expectation that the reduced flexibility of
the isopropyl side-chains might facilitate crystal growth.

The synthesis of (+)-3 was completed in a convergent
fashion, similar to that employed for (+)-2 (see Supporting
Information). Not surprisingly, the macrocyclization step
proceeded in even lower yield given the steric encumberance
of the isopropyl side-chains (ca. 2% yield). Concentration-

dependent NMR analysis of (+)-3 revealed nearly identical
solution-state aggregation as observed for (+)-2 (see Sup-
porting Information). Gratifyingly, compared to (+)-2,
superior crystals of (+)-3 could be obtained by slow
evaporation in 1:1 CHCl3:trifluoroethanol, and the solid-state
structure analysis using synchrotron X-ray diffraction was
achieved.14 Interestingly, unlike the open chain hexapyrroli-
none (-)-1, (+)-3 assembles into a staggered nanotube-like
array (Figure 4). Comparison of this structure, with that of
(-)-1,8 provides both interesting similarities and differences.
The monomers of (+)-3 assemble in an antiparallel fashion,
as observed for (-)-1. Alternatively, the staggered array
adopted by (+)-3 possesses only four intermolecular
pyrrolinone-pyrrolinone hydrogen bonds between each pair
of monomers, compared to six for (-)-1. Additionally, the
staggered nanotube structure of (+)-3 forms an infinite array
in the crystal lattice (four molecules/unit cell as illustrated
in Figure 4b-d). Given the pyrrolinone scaffold comprises
a designed peptidomimetic, our work has obvious parallels
to the cyclic peptides pioneered by Karle,15 Lorenzi,16 and
Ghadiri.17,9 Of particular interest, the 1987 report by G. P.
Lorenzi et al. discloses a series of D,L-alternating cyclic
hexapeptides.16 In contrast to the hexapeptides, which were
reported to be completely insoluble in all common organic
solvents, (+)-2 and (+)-3 are moderately soluble in most
polar organic solvents (i.e., EtOAc, EtOH) and display
excellent solubility in CHCl3. Importantly, the structure of
cyclic hexapyrrolinone (+)-3 overlays remarkably well with
the Lorenzi cyclic hexapeptides (Figure 5), illustrating the
close correspondence between the pyrrolinone and peptide
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Scheme 1. Convergent Synthesis of Macrocyclic Hexapyrrolinone (+)-2

Figure 3. Concentration dependence of 1H NMR chemical shifts
in CDCl3 of N-H(1) (0) and NH(2) ([) protons of (+)-2.
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units and suggesting the possibility that the two macrocycles
would form heterogeneous aggregates.

In summary, the design, syntheses, and structural analysis
of macrocyclic D,L-hexapyrrolinones (+)-2 and (+)-3 have
been achieved. Studies by NMR suggest that the macrocyclic
hexapyrrolinones aggregate in solution, while the solid-state
structure of (+)-3, determined via X-ray crystallography,
revealed an extended, staggered nanotube-like array, stabi-
lized by four intermolecular hydrogen bonds between pairs
of pyrrolinone rings. Importantly, the solid state structure
of (+)-3 demonstrates the ability of macrocyclic pyrrolinones
to assemble into nanotube-like structures. Studies to both
improve the final macrocyclization as well as to exploit the
structural properties of such cyclic heterochiral polypyrroli-
nones continue in our laboratory.
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Figure 4. X-ray structure of (+)-3: (a) a single molecule; (b)
representative stereoview of the infinite staggered nanotube array,
viewed from the side. The staggered nanotube structure is more
clearly visible with the side-chains removed, from the top (c) and
from the side (d).

Figure 5. Overlay of the X-ray structure of cyclic hexapyrrolinone
(+)-3 (blue) with the X-ray structure of cyclo(-D-Leu-L-MeLeu-
D-Leu-L-MeLeu-D-Leu-L-MeLeu-) (red).16
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